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Appendix 5A

5A.1 Probability Distributions Related 
to the Normal Distribution

The t, chi-square (χ2), and F probability distributions, whose salient features are discussed in
Appendix A, are intimately related to the normal distribution. Since we will make heavy use of these
probability distributions in the following chapters, we summarize their relationship with the normal
distribution in the following theorem; the proofs, which are beyond the scope of this book, can be
found in the references.1

Theorem 5.1. If Z1, Z2, . . . , Zn are normally and independently distributed random
variables such that Zi ∼ N (µi , σ 2

i ), then the sum Z = ∑
ki Zi , where k i are constants not all

zero, is also distributed normally with mean 
∑

k iµi and variance 
∑

k2
i σ

2
i ; that is,

Z ∼ N (
∑

kiµi ,
∑

k2
i σ

2
i ). Note: µ denotes the mean value.

In short, linear combinations of normal variables are themselves normally distributed. For example,
if Z1 and Z2 are normally and independently distributed as Z1 ∼ N(10, 2) and Z2 ∼ N (8, 1.5),
then the linear combination Z = 0.8Z1 + 0.2Z2 is also normally distributed with mean = 0.8(10) +
0.2(8) = 9.6 and variance = 0.64(2) + 0.04(1.5) = 1.34, that is, Z ∼ (9.6, 1.34).

Theorem 5.2. If Z1, Z2, . . . , Zn are normally distributed but are not independent, the sum
Z = ∑

ki Zi , where ki are constants not all zero, is also normally distributed with mean∑
kiµi and variance [

∑
k2

i σ
2
i + 2

∑
ki kj cov (Zi , Zj ), i �= j].

Thus, if Z1 ∼ N (6, 2) and Z2 ∼ N (7, 3) and cov (Z1, Z2) = 0.8, then the linear combination
0.6Z1 + 0.4Z2 is also normally distributed with mean = 0.6(6) + 0.4(7) = 6.4 and variance =
[0.36(2) + 0.16(3) + 2(0.6)(0.4)(0.8)] = 1.584.

Theorem 5.3. If Z1, Z2, . . . , Zn are normally and independently distributed random
variables such that each Zi ∼ N (0, 1), that is, a standardized normal variable, then 

∑
Z2

i =
Z2

1 + Z2
2 + · · · + Z2

n follows the chi-square distribution with n df. Symbolically, 
∑

Z2
i ∼ χ2

n ,
where n denotes the degrees of freedom, df.

In short, “the sum of the squares of independent standard normal variables has a chi-square
distribution with degrees of freedom equal to the number of terms in the sum.”2

Theorem 5.4. If Z1, Z2, . . . , Zn are independently distributed random variables each
following chi-square distribution with ki df, then the sum

∑
Zi = Z1 + Z2 + · · · + Zn also

follows a chi-square distribution with k = ∑
ki df.

Thus, if Z1 and Z2 are independent χ2 variables with df of k1 and k2, respectively, then
Z = Z1 + Z2 is also a χ2 variable with (k1 + k2) degrees of freedom. This is called the reproductive
property of the χ2 distribution.

1For proofs of the various theorems, see Alexander M. Mood, Franklin A. Graybill, and Duane C. Bose,
Introduction to the Theory of Statistics, 3d ed., McGraw-Hill, New York, 1974, pp. 239–249.
2Ibid., p. 243.
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Theorem 5.5. If Z1 is a standardized normal variable [Z1 ∼ N (0, 1)] and another variable
Z2 follows the chi-square distribution with k df and is independent of Z1, then the variable
defined as

t = Z1√
Z2/

√
k

= Z1
√

k√
Z2

= Standard normal variable√
Independent chi-square variable/df

∼ tk

follows Student’s t distribution with k df. Note: This distribution is discussed in Appendix A
and is illustrated in Chapter 5.

Incidentally, note that as k, the df, increases indefinitely (i.e., as k → ∞), the Student’s t distribu-
tion approaches the standardized normal distribution.3 As a matter of convention, the notation tk
means Student’s t distribution or variable with k df.

Theorem 5.6. If Z1 and Z2 are independently distributed chi-square variables with k1 and
k2 df, respectively, then the variable

F = Z1/k1

Z2/k2
∼ Fk1,k2

has the F distribution with k1 and k2 degrees of freedom, where k1 is known as the numerator
degrees of freedom and k2 the denominator degrees of freedom.

Again as a matter of convention, the notation Fk1,k2 means an F variable with k1 and k2 degrees of
freedom, the df in the numerator being quoted first.

In other words, Theorem 5.6 states that the F variable is simply the ratio of two independently dis-
tributed chi-square variables divided by their respective degrees of freedom.

Theorem 5.7. The square of (Student’s) t variable with k df has an F distribution with k1 =
1 df in the numerator and k2 = k df in the denominator.4 That is,

F1,k = t2
k

Note that for this equality to hold, the numerator df of the F variable must be 1. Thus,
F1,4 = t2

4 or F1,23 = t2
23 and so on.

As noted, we will see the practical utility of the preceding theorems as we progress.

Theorem 5.8. For large denominator df, the numerator df times the F value is approximately
equal to the chi-square value with the numerator df. Thus,

m Fm,n = χ2
m as n → ∞

Theorem 5.9. For sufficiently large df, the chi-square distribution can be approximated by
the standard normal distribution as follows:

Z =
√

2χ2 − √
2k − 1 ∼ N (0, 1)

where k denotes df.

3For proof, see Henri Theil, Introduction to Econometrics, Prentice Hall, Englewood Cliffs, NJ, 1978,
pp. 237–245.
4For proof, see Eqs. (5.3.2) and (5.9.1).
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5A.2 Derivation of Equation (5.3.2)

Let

Z1 = β̂2 − β2

se (β̂2)
=

(β̂2 − β2)
√

x2
i

σ
(1)

and

Z2 = (n − 2)
σ̂ 2

σ 2
(2)

Provided σ is known, Z1 follows the standardized normal distribution; that is, Z1 ∼ N (0, 1).
(Why?) Z2 follows the χ2 distribution with (n − 2) df.5 Furthermore, it can be shown that Z2 is dis-
tributed independently of Z1.6 Therefore, by virtue of Theorem 5.5, the variable

t = Z1
√

n − 2√
Z2

(3)

follows the t distribution with n − 2 df. Substitution of Eqs. (1) and (2) into Eq. (3) gives Eq. (5.3.2).

5A.3 Derivation of Equation (5.9.1)

Equation (1) shows that Z1 ∼ N (0, 1). Therefore, by Theorem 5.3, the preceding quantity

Z2
1 = (β̂2 − β2)2 ∑

x2
i

σ 2

follows the χ2 distribution with 1 df. As noted in Section 5A.1,

Z2 = (n − 2)
σ̂ 2

σ 2
=

∑
û2

i

σ 2

also follows the χ2 distribution with n − 2 df. Moreover, as noted in Section 4.3, Z2 is distributed in-
dependently of Z1. Then from Theorem 5.6, it follows that

F = Z2
1/1

Z2/(n − 2)
=

(β̂2 − β2)2
(∑

x2
i

)
∑

û2
i /(n − 2)

follows the F distribution with 1 and n − 2 df, respectively. Under the null hypothesis H0: β2 = 0, the
preceding F ratio reduces to Eq. (5.9.1).

5A.4 Derivations of Equations (5.10.2) and (5.10.6)

Variance of Mean Prediction
Given Xi = X0, the true mean prediction E(Y0 | X0) is given by

E(Y0 | X0) = β1 + β2 X0 (1)

5For proof, see Robert V. Hogg and Allen T. Craig, Introduction to Mathematical Statistics, 2d ed.,
Macmillan, New York, 1965, p. 144.
6For proof, see J. Johnston, Econometric Methods, 3d ed., McGraw-Hill, New York, 1984, pp. 181–182.
(Knowledge of matrix algebra is required to follow the proof.)
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We estimate Eq. (1) from

Ŷ0 = β̂1 + β̂2 X0 (2)

Taking the expectation of Eq. (2), given X0, we get

E(Ŷ0) = E(β̂1) + E(β̂2)X0

= β1 + β2 X0

because β̂1 and β̂2 are unbiased estimators. Therefore,

E(Ŷ0) = E(Y0 | X0) = β1 + β2 X0 (3)

That is, Ŷ0 is an unbiased predictor of E(Y0 | X0).
Now using the property that var (a + b) = var (a) + var (b) + 2 cov (a, b) , we obtain

var (Ŷ0) = var (β̂1) + var (β̂2)X2
0 + 2 cov (β̂1β̂2)X0 (4)

Using the formulas for variances and covariance of β̂1 and β̂2 given in Eqs. (3.3.1), (3.3.3), and
(3.3.9) and manipulating terms, we obtain

var (Ŷ0) = σ 2
[

1

n
+ (X0 − X̄)2∑

x2
i

]
= (5.10.2)

Variance of Individual Prediction
We want to predict an individual Y corresponding to X = X0; that is, we want to obtain

Y0 = β1 + β2 X0 + u0 (5)

We predict this as

Ŷ0 = β̂1 + β̂2 X0 (6)

The prediction error, Y0 − Ŷ0, is

Y0 − Ŷ0 = β1 + β2 X0 + u0 − (β̂1 + β̂2 X0)

= (β1 − β̂1) + (β2 − β̂2)X0 + u0 (7)

Therefore,

E(Y0 − Ŷ0) = E(β1 − β̂1) + E(β2 − β̂2)X0 − E(u0)

= 0

because β̂1, β̂2 are unbiased, X0 is a fixed number, and E(u0) is zero by assumption.
Squaring Eq. (7) on both sides and taking expectations, we get var (Y0 − Ŷ0) =

var (β̂1) + X2
0 var (β̂2) + 2X0 cov (β1, β2) + var (u0). Using the variance and covariance formulas

for β̂1 and β̂2 given earlier, and noting that var (u0) = σ 2, we obtain

var (Y0 − Ŷ0) = σ 2
[

1 + 1

n
+ (X0 − X̄)2∑

x2
i

]
= (5.10.6)
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